Improved DFT Potential Energy Surfaces via Improved Densities.

نویسندگان

  • Min-Cheol Kim
  • Hansol Park
  • Suyeon Son
  • Eunji Sim
  • Kieron Burke
چکیده

Density-corrected DFT is a method that cures several failures of self-consistent semilocal DFT calculations by using a more accurate density instead. A novel procedure employs the Hartree-Fock density to bonds that are more severely stretched than ever before. This substantially increases the range of accurate potential energy surfaces obtainable from semilocal DFT for many heteronuclear molecules. We show that this works for both neutral and charged molecules. We explain why and explore more difficult cases, for example, CH(+), where density-corrected DFT results are even better than sophisticated methods like CCSD. We give a simple criterion for when DC-DFT should be more accurate than self-consistent DFT that can be applied for most cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

4 Ions in solution : Density Corrected Density Functional Theory ( DC - DFT )

Standard density functional approximations often give questionable results for oddelectron radical complexes, with the error typically attributed to self-interaction. In density corrected density functional theory (DC-DFT), certain classes of density functional theory calculations are significantly improved by using densities more accurate than the self-consistent densities. We discuss how to i...

متن کامل

Ions in solution: density corrected density functional theory (DC-DFT).

Standard density functional approximations often give questionable results for odd-electron radical complexes, with the error typically attributed to self-interaction. In density corrected density functional theory (DC-DFT), certain classes of density functional theory calculations are significantly improved by using densities more accurate than the self-consistent densities. We discuss how to ...

متن کامل

Improved calculation of Si sputter yield via first principles derived interatomic potential

Silicon sputter yield under medium energy Ar+ ion bombardment is calculated via molecular dynamics, using a highly accurate interatomic potential for Ar–Si interactions derived from first-principles calculations. Unlike the widely used universal repulsive potentials such as the Moliere or ZBL parameterizations, this new potential, referred to as DFT-ArSi, is developed via localized basis densit...

متن کامل

Rolling Bearing Fault Analysis by Interpolating Windowed DFT Algorithm

This paper focuses on the problem of accurate Fault Characteristic Frequency (FCF) estimation of rolling bearing. Teager-Kaiser Energy Operator (TKEO) demodulation has been applied widely to rolling bearing fault detection. FCF can be extracted from vibration signals, which is pre-treatment by TEKO demodulation method. However, because of strong noise background of fault vibration signal, it is...

متن کامل

A density functional theory approach to noncovalent interactions via interacting monomer densities.

A recently proposed "DFT + dispersion" treatment (Rajchel et al., Phys. Rev. Lett., 2010, 104, 163001) is described in detail and illustrated by more examples. The formalism derives the dispersion-free density functional theory (DFT) interaction energy and combines it with the dispersion energy from separate DFT calculations. It consists of the self-consistent polarization of DFT monomers restr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 6 19  شماره 

صفحات  -

تاریخ انتشار 2015